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Abstract

The linear stability analysis of mixed convection in a heated vertical channel filled with a porous medium was in-

vestigated. The Galerkin method was employed in this calculation. The results indicated that the fully developed

laminar flow could become unstable under a mild heating condition for higher modified Darcy numbers of Da� ¼ 1 and

10�2, but the critical Rayleigh number increases substantially for Da� ¼ 10�4. The disturbance kinetic energy budget

analysis showed that, for Da� ¼ 1 and 10�2, there are generally three instability types, the thermal-buoyant, mixed, and

thermal-shear instabilities for low, intermediate, and high Reynolds numbers, respectively, while for Da� ¼ 10�4, the

thermal-buoyant instability is the only driving mechanisms of flow instability regardless of the value of Reynolds

number.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The fluid flow and heat transfer in the wall-bounded

forced flow through a porous medium has been exten-

sively studied in the past, because it relates to various

applications such as solid matrix heat exchanger, ther-

mal insulation, nuclear waste disposal, geothermal en-

ergy extraction, thermal energy storage in underground

aquifers, and other practical interesting designs. In the

laminar forced convection in a porous channel, Vafai

and Kim [1] presented an exact solution for the velocity

and temperature fields by using Darcy–Brinkman–

Forchheimer (DBF) model. They showed that for a

high-permeability porous medium the thickness of the

momentum boundary layer depends on both the Darcy

number and the inertia parameter, and neglecting the

inertia effect could lead to serious errors for Nusselt

number calculations. Nield et al. [2] also presented a
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theoretical analysis of fully developed forced convection

in a porous channel. They indicated that their general

solution, with no restrictions, extends existing solutions

to all values of the Darcy number and Forchheimer in-

ertia coefficient, and also to a medium with the effective

viscosity different from the fluid viscosity. Hadim and

Chen [3] investigated the non-Darcy mixed convection in

a vertical porous channel with asymmetric wall heating.

Their results showed that as the Darcy number is de-

creased, distortions in the velocity profile lead to in-

creased heat transfer. The fully developed mixed

convection in a vertical porous channel with imposed

uniform heat flux was performed using DBF model by

Chen et al. [4]. It was shown that the buoyancy force can

significantly affect Nusselt number for higher Rayleigh

numbers, higher modified Darcy number and/or lower

Forchheimer number. A comprehensive review in the

laminar wall-bounded forced or mixed convection is

given by Nield and Bejan [5].

The linear stability of natural convection in a per-

meable medium between vertical coaxial cylinders was

investigated by Bau and Torrance [6]. They found that
ed.
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Nomenclature

c complex wave speed (¼ cr þ ici)
cF inertial coefficient

C1 axial temperature gradient

Da� modified Darcy number, leK=lfL
2

Es, Eb, Ed disturbance kinetic energies

EF, EDa defined in Eq. (15)

~eex unit vector in the x direction

F Forchheimer number, cFLG=
ffiffiffiffi
K

p

g gravitational acceleration

G pressure gradient, �dpB=dx
K permeability

L half width of channel

p pressure

Pr effective Prandtl number, me=ae
Ra Rayleigh number, gbTC1L4=meae
Re Reynolds number

S ratio of effective to fluid thermal Capaci-

tance, ðqcÞe=ðqcÞf
t time

T � dimensional temperature

T �
w dimensional wall temperature

UB velocity at laminar base state
~VV fluid velocity

u, v, w flow velocity components

x, y, z coordinates

Greek symbols

a streamwise wave number

ae effective thermal diffusivity

b spanwise wave number

bT thermal expansion coefficient

e porosity

h dimensionless temperature

hB temperature at laminar base state

le effective viscosity

lf fluid viscosity

me effective kinematic viscosity

qf fluid density

Superscripts
� dimensional quantity
0 infinitesimal disturbance
^ complex amplitude function of disturbance,

defined in Eq. (8)
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the preferred convective modes at the onset of convec-

tion are predominantly asymmetric. Kladias and Prasad

[7] studied the flow transition of the natural convection

in a porous medium heated from below by DBF model.

They found that at the onset, the oscillatory convection

is highly periodic, but with an increase in convective

motions the disorder increases monotonically and the

fluctuations become highly random. The linear stability

and flow transition of mixed convection in simple geo-

metries such as pipe and channel with or without porous

medium are fundamental issues in heat transfer and fluid

dynamics. This research topics in the channel flows for

the pure viscous fluid were examined by Chen and

Chung [8,9]. For a flow configuration in a vertical heated

porous channel, it is desired to know whether the flow is

stable or not, and the flow instability driving mecha-

nism. Thus the linear stability analysis was investigated

in this paper.

Fig. 1. The schematic of geometry and coordinate system.
2. Formulation

The problem under investigation is the fully devel-

oped mixed convection between two parallel vertical

plates filled with a fluid-saturated porous medium. The

uniform heat flux is symmetrically imposed on both

walls. The schematic of this system is given in Fig. 1. The
mathematical model of the non-Darcy flow proposed by

Kladias and Prasad [7] was generally followed. The

governing equations for continuity, momentum, and

energy could be written as:

r� � V
*�

¼ 0 ð1Þ
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qf

e
o~VV �

ot�
þ qf

e2
ð~VV � � r�Þ~VV �

¼ �r�p� � lf

K
~VV � � qf

cFffiffiffiffi
K

p j~VV �j~VV � þ qf g~eex þ ler�2~VV �

ð2Þ

S
oT �

ot�
þ ð~VV � � r�ÞT � ¼ aer�2T � ð3Þ

It is noted that Kladias and Prasad wrote the Forch-

heimer term as bj~VV �j~VV �=K, where b is the porous matrix

structure property associated with inertia term. For a

constant heat flux at the walls, the wall temperature is

assumed to increases linearly with x� as T �
w ¼ T �

0 þ C1x�,
where C1 is the axial temperature gradient, and T �

0 is the

upstream reference wall temperature. Here le in Eq. (2)

is called as the apparent viscosity [7] or effective viscosity

[10] for Brinkman’s term. Discussions on the value of le

could be found in the Refs. [10,11]. The non-dimen-

sionalization is carried out based on the following defi-

nition.

x ¼ x�

L
; y ¼ y�

L
; z ¼ z�

L
; p ¼ p�

L2

qfm2e
ð4aÞ

t ¼ t�
meG
L2

; ~VV ¼
~VV �L
me

1

G
; h ¼ T � � T �

w

C1LGPr
ð4bÞ

where G ¼ �dpB=dx is the pressure gradient at laminar

state. The dimensionless momentum and energy equa-

tions are

G
e
o~VV
ot

þ G
e2
ð~VV � rÞ~VV ¼ � 1

G
rp � 1

Da�
~VV � F j~VV j~VV

þ Rah~eex þr2~VV ð5Þ

S
oh
ot

þ u
oh
ox

þ v
oh
oy

þ w
oh
oz

¼ 1

GPr
ðr2h� uÞ ð6Þ

The Boussinesq approximation is used in Eq. (5). Here

Da� ¼ leK=lfL
2 is the modified Darcy number, F ¼

cFLG=
ffiffiffiffi
K

p
is the Forchheimer number, and Ra ¼

gbTC1L4=meae is the Rayleigh number.

In the linear stability analysis, the infinitesimal dis-

turbances are imposed on the fully developed laminar

base flow, thus the velocity, pressure, and temperature

fields can be written as:

~VV ¼ UBðyÞ~eex þ ~VV 0; p ¼ pBðxÞ þ p0; h ¼ hBðyÞ þ h0

ð7Þ

where UB, pB, and hB refers to the flow velocity, pressure,

and temperature at laminar base state, respectively. The

laminar velocity and temperature profiles can be found

in Fig. 3 of Ref. [4]. There are errata in captions in Ref.

[4], where the caption of Fig. 1 should be entirely ex-

changed with that of Fig. 2. The prime in Eq. (7) denotes
the infinitesimal disturbances. By using the usual normal

mode form, the disturbances can be represented by

V
*0

¼ ~̂VV~VV ðyÞeiðaxþbz�actÞ

p0 ¼ p̂pðyÞeiðaxþbz�actÞ

h0 ¼ ĥhðyÞeiðaxþbz�actÞ

ð8Þ

where ~̂VV~VV ¼ ðûu; v̂v; ŵwÞ, p_, and h
_

are the complex amplitude

functions. Here a (real) and b (real) are the wave num-

bers in the x and z directions, respectively, and

c ¼ cr þ ici is the complex wave speed. The growth or

decay of the disturbance depends on ci. The flow is

stable, neutrally stable, or unstable for ci < 0, ci ¼ 0, or

ci > 0, respectively. Following the standard linear sta-

bility method [8], the linearized stability equations be-

come the following:

d4v̂v
dy4

� 2ða2 þ b2Þ d
2v̂v

dy2
þ ða2 þ b2Þ2v̂v

þ ia
G
e2

"
� UB

d2v̂v
dy2

þ d2UB

dy2
v̂vþ ða2 þ b2ÞUBv̂v

#

þ 1

Da�

"
� d2v̂v
dy2

þ ða2 þ b2Þv̂v
#
� a2

a2 þ b2

�
þ 1

�

� F
d

dy
jUBj

dv̂v
dy

 !
þ ða2 þ b2ÞF jUBjv̂v ð9Þ

þ iab

a2 þ b2
F

d

dy
ðjUBjĝgÞ � iaRa

dh
_

dy

¼ iac
G
e

"
� d2v̂v
dy2

þ ða2 þ b2Þv̂v
#

� d2ĝg
dy2

þ ða2 þ b2Þĝgþ ia
G
e2
UBĝgþ b

G
e2

dUB

dy
v̂v

þ 1

Da�
ĝgþ b2

a2 þ b2

�
þ 1

�
F jUBjĝg

þ iab

a2 þ b2
F jUBj

dv̂v
dy

� bRaĥh
ð10Þ

¼ iac
G
e
ĝg

1

GPr

"
� d2ĥh

dy2
þ ða2 þ b2Þĥh

#
þ iaUBĥh

þ dhB
dy

v̂vþ 1

GPrða2 þ b2Þ
ia
dv̂v
dy

 
þ bĝg

!
ð11Þ

¼ iacSĥh

where ĝg ¼ bûu� aŵw. The associated boundary conditions

are

v̂v ¼ dv̂v
dy

¼ ĝg ¼ ĥh ¼ 0 at y ¼ �1 ð12Þ
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Eqs. (9)–(11) and the corresponding boundary condi-

tions constitute an eigenvalue problem.
3. Numerical method

The Galerkin method is used to solve the coupled

Eqs. (9)–(11) and their associated boundary conditions.

In this method, the test (weighted) functions are the

same as the base (trial) functions. Thus the v̂v, ĝg, and ĥh
are expanded in the following:

v̂v ¼
XN
n¼0

annnðyÞ; ĝg ¼
XN
n¼0

bnfnðyÞ; ĥh ¼
XN
n¼0

dnfnðyÞ

ð13Þ

where an, bn and dn are the unknown coefficients. The

base functions are shown in the following:

nnðyÞ ¼ ð1� y2Þ2PnðyÞ; fnðyÞ ¼ ð1� y2ÞPnðyÞ ð14Þ

where each base functions nnðyÞ and fnðyÞ satisfies the

boundary conditions and PnðyÞ is the Legendre polyno-

mial of order n. The other details can be found in Chen

and Chung [8]. We verified our code by comparing with

the published results of an isothermal channel flow

without porous medium for the case of Ra ¼ 0 by setting

e ¼ 1, F ¼ 0, and Da� ! 1. Our isothermal results

of the critical Reynolds number, Rec ¼ 3848:147
(Rec ¼ 5772:22, if based on the maximum velocity) and

the critical wave number, ac ¼ 1:0206 with N ¼ 51 in

Eq. (13) agree exactly with those given by Orszag [12].
4. Energy budget analysis

In order to understand the role played by the heat

transfer during the flow instability, it is therefore nec-

essary to keep track of the kinetic energy budget for the

disturbances. The driving mechanisms of flow instability

may be determined by the production and dissipation of

disturbance kinetic energy [13,8]. The balance of dis-

turbance kinetic energy for the infinitesimal disturbance

is

G
e

o

ot
1

2
ðju0j2

�
þ jv0j2 þ jw0j2Þ

�

¼ �G
e2

u0v0
dUB

dy

� �
þ Ra u0h0

D E
� 1

Da�
ðju0j2
D

þ jv0j2 þ jw0j2Þ
E
� F jUBjðju0j2

D
þ jv0j2 þ jw0j2Þ

þ jUBju0u0
E
� ðru0Þ2
D

þ ðrv0Þ2 þ ðrw0Þ2
E

¼ Es þ Eb þ EDa þ EF þ Ed ð15Þ

where the bracket h i implies integration over the vol-

ume of the disturbance wave. The first term on the right-
hand-side of Eq. (15), Es, represents the shear produc-

tion of disturbance kinetic energy. The second term, Eb,

represents the disturbance kinetic energy production due

to the work done by the thermal-buoyant potential of

disturbance temperature field. The third term EDa and

fourth term EF, represent the dissipation of energy

through the surface drag associated with the modified

Darcy term and form drag associated with the Forch-

heimer term due to the solid matrix, respectively. The last

term, Ed, represents the dissipation of energy through

viscosity. On the neutral stability curve ci ¼ 0, the dis-

turbances are neither growing nor decaying, thus the left

hand side term (differentiation with time) is zero.
5. Results and discussion

The dimensionless parameters in the governing Eqs.

(9)–(11) are the modified Darcy number, Da�, Rayleigh

number Ra, Forchheimer number, F , pressure gradient

number G, and effective Prandtl number, Pr. Since the

Reynolds number, Re, is often used in the stability

analysis for forced and mixed convections, therefore the

Re is used as one parameter instead of G by the relation

of G ¼ Re=UB from Eq. (4b), where UB is the mean

laminar flow velocity. The main objective in this study is

to investigate the effect of modified Darcy number and

the Forchheimer number on the flow stability for the

high porosity medium. In this study, Da� of 1, 10�2, and

10�4 and F of 1, 102, and 104 are chosen for calculation.

The modified Prandtl number of 1 and porosity of 0.9

and thermal capacitance ratio, S, of 1 are used. Because

the stable and unstable domains are separated by the

neutral stability curve of ci ¼ 0, we will basically present

the neutral stability curves for various Da� and F
numbers to demonstrate the characteristics of stability

for the flow. We have included both integer and non-

integer values of spanwise wave number, b, in this

computation. The results show that b ¼ 0 is always the

least stable mode, that is, the least stable disturbances

are two-dimensional.

The instability boundaries on the (Re;Ra) plane for

Da� ¼ 1 and F ¼ 1, 102, and 104 are plotted in Fig. 2.

The results show that the critical Rayleigh number, Rac,
is smaller than 55 for F ¼ 1 or 102, when Reynolds

number is greater than 100. The Rac for F ¼ 104 is

smaller than 290 for Re > 200. This indicates that the

fully developed flow for higher modified Darcy number

could become unstable under a very mild heating con-

dition and the buoyancy force has an important effect on

the flow instability. The critical Rayleigh number de-

creases with increasing Re, but the decreasing rate be-

comes smaller for higher Re. Two curves for F ¼ 1 and

102 are almost overlapping for Re > 700. It is also seen

that the variation of the Rac between F ¼ 102 and 104 is

less than 250 at the same Re, when Reynolds number is
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greater than 200. This shows that the Forchheimer

number effect on the Rac is rather mild for higher

modified Darcy number.

The linear instability boundaries for Da� ¼ 1 and

F ¼ 1, 102, and 104 on the (Re; ac) plane, where ac is the
critical streamwise wave number, is plotted in Fig. 3.

Those curves demonstrate the variation of ac with re-

spect to the Re along the neutrally stable curve. It is

worth noting that the ac for F ¼ 1 or 102 encounters a

big upward jump, when the Reynolds number reaches a

threshold value. The variation of the ac value before and
after that jump is more than 2 for F ¼ 1 and more than

3 for F ¼ 1 or 102. As discussed later in Table 1, the
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Fig. 3. The variation of wave number, ac, with Re along the

neutral stability curve for Da� ¼ 1.
instability mechanisms are different before and after

jump. Before that jump, the instability type is the ther-

mal-buoyant instability. After that jump, the instability

type suddenly switches to the thermal-shear instability

for F ¼ 1 and to mixed instability for F ¼ 102. Similar

characteristic with sudden jump of wave number was

found in mixed convection without porous medium in

the vertical channel [8,14]. Su and Chung [15] also found

such behavior in the linear stability analysis for the

vertical heated pipe, where the Chebyshev collocation

method was used.

It is also shown in Fig. 3 that the behavior of ac is

different before and after that big jump. Before that

jump, the ac decreases quickly with increasing Reynolds

number, while after that jump, the ac increases with in-

creasing Reynolds number. Each curve has a minimum

value, and it is just located at the point where the jump

occurs. The Reynolds number, where the ac has a big

jump, is lower when the Forchheimer number is higher,

and it occurs at Re about 800 for F ¼ 1 and about 263

for F ¼ 102. After that jump, the ac’s are as high as 2.43

and 3.25 for F ¼ 1 and 102, respectively, and the ac’s are
higher than 4.0 at Re ¼ 2500. The behavior of ac for

F ¼ 104 is different from that of F ¼ 1 or 102. Its ac
doesn’t have a big jump and changes slightly for

Re > 500, but the curve of ac also has a minimum value

at low Reynolds number. The ac is greater than 2.0 for

Re > 450. It is well known that the critical wave number

is 1.02 for the isothermal channel flow without porous

medium [13]. The above results show that the ac is

greater than 2.0 for most of flow region, which indicates

that the wavelength of disturbance in the porous flow is

short and it is less half of that for the isothermal channel

flow without porous medium.

The wave speed, cr, along the instability boundary is

plotted in Fig. 4, where cr is the wave speed non-

dimensionlized by the mean laminar flow velocity. The

wave speed curve for F ¼ 1 or 102 has a downward

jump, when the Reynolds number reaches a threshold

value, where the ac also has a big upward jump. After

that jump, the cr increases very slightly with increasing

Reynolds number. The wave speed for F ¼ 104 de-

creases with increasing Reynolds number, but the rate of

decrease is very large for Re < 300, while the decrease

rate is very small for Re > 1000. The wave speeds for all

curves are larger than 1, this implies that their wave

speeds are larger than the mean fluid velocity.

The instability boundaries on the (Re;Ra) plane for

Da� ¼ 10�2 and F ¼ 1, 102, and 104 are plotted in Fig. 5.

The results show that all the critical Rayleigh numbers

are smaller than 775 for Re > 200. This indicates that

the fully developed flow could become unstable under a

mild heating condition for Da� ¼ 10�2. At the same Re,
the Rac for Da� ¼ 10�2 is about between 2.0 and 6.0

times of those for Da� ¼ 1. This indicates that the var-

iation of the critical Rayleigh numbers between Da� ¼ 1



Table 1

Energy budget for the neutral stability curve (TS: thermal-shear instability, M: mixed instability, TB: thermal-buoyant instability)

Re Rac ac Da� F Es Eb EDa EF Ed Type

100 41.4 0.62 1 1 0.066 0.934 )0.065 )0.006 )0.929 TB

798 38.85 0.084 1 1 0.037 0.963 )0.061 )0.006 )0.932 TB

802 38.83 3.25 1 1 0.824 0.176 )0.025 )0.002 )0.973 TS

1500 35.1 3.76 1 1 0.899 0.101 )0.020 )0.002 )0.978 TS

2500 32.7 4.16 1 1 0.936 0.064 )0.017 )0.001 )0.982 TS

100 55.1 0.87 1 102 0.180 0.820 )0.045 )0.299 )0.656 TB

261 50.9 0.376 1 102 0.172 0.828 )0.042 )0.311 )0.647 TB

265 50.8 2.43 1 102 0.548 0.452 )0.031 )0.184 )0.785 M

800 39.7 3.29 1 102 0.819 0.181 )0.023 )0.150 )0.828 TS

1500 34.2 3.67 1 102 0.897 0.103 )0.019 )0.137 )0.844 TS

2500 30.5 4.00 1 102 0.935 0.067 )0.016 )0.126 )0.858 TS

200 288.6 1.85 1 104 0.066 0.934 )0.009 )0.839 )0.152 TB

800 158.4 2.34 1 104 0.303 0.697 )0.007 )0.801 )0.192 M

1500 133 2.36 1 104 0.521 0.479 )0.007 )0.785 )0.208 M

2500 115 2.27 1 104 0.667 0.333 )0.006 )0.781 )0.213 M

3750 98.1 2.22 1 104 0.754 0.246 )0.006 )0.777 )0.217 TS

5000 85.2 2.21 1 104 0.804 0.196 )0.006 )0.773 )0.221 TS

200 324.3 1.64 10�2 1 0.135 0.865 )0.835 )0.000 )0.165 TB

800 124.8 2.32 10�2 1 0.453 0.547 )0.765 )0.000 )0.235 M

1500 96.9 2.35 10�2 1 0.672 0.328 )0.750 )0.000 )0.250 M

2500 75.6 2.36 10�2 1 0.792 0.208 )0.741 )0.000 )0.259 TS

3750 58.9 2.41 10�2 1 0.858 0.142 )0.731 )0.000 )0.269 TS

5000 48.3 2.48 10�2 1 0.893 0.107 )0.722 )0.000 )0.278 TS

200 774.9 1.58 10�2 104 0.040 0.960 )0.594 )0.277 )0.277 TB

800 239.7 2.00 10�2 104 0.230 0.770 )0.507 )0.344 )0.344 TB

1500 182.8 2.20 10�2 104 0.434 0.566 )0.481 )0.346 )0.346 M

2500 157.7 2.14 10�2 104 0.605 0.395 )0.466 )0.353 )0.353 M

3750 136.3 2.06 10�2 104 0.708 0.292 )0.457 )0.361 )0.361 TS

5000 118.8 2.04 10�2 104 0.766 0.234 )0.449 )0.365 )0.365 TS

300 3780800 8.12 10�4 1 )0.022 1.022 )0.820 )0.000 )0.180 TB

800 947400 5.27 10�4 1 )0.063 1.063 )0.870 )0.000 )0.130 TB

1500 442650 3.94 10�4 1 )0.080 1.080 )0.894 )0.000 )0.106 TB

2500 249550 3.05 10�4 1 )0.088 1.088 )0.913 )0.000 )0.087 TB

3750 160400 2.41 10�4 1 )0.088 1.088 )0.931 )0.000 )0.069 TB

5000 116400 2.01 10�4 1 )0.078 1.078 )0.944 )0.000 )0.056 TB
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Fig. 4. The variation of wave speed, cr, with Re along the

neutral stability curve for Da� ¼ 1.
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and 10�2 is within one order of magnitude. The Rac in

Fig. 5 decreases with increasing Reynolds number, and

the rate of decrease is smaller for higher Re. The curves

for F ¼ 1 and 102 are almost overlapping each other.

The critical Rayleigh number for F ¼ 104 is only about

1.8 times larger than that of F ¼ 1 or 102. This indicates

that the Forchheimer number effect on the Rac is small

for Da� ¼ 10�2.

The linear instability boundaries for Da� ¼ 10�2 on

the (Re; ac) plane is plotted in Fig. 6 for F ¼ 1, 102, and

104. Each curve doesn’t have any sudden jump, while the

ac has a big jump for Da� ¼ 1 and F ¼ 1 or 102, as

shown before in Fig. 3. But each curve in Fig. 6 also has

a minimum value at low Reynolds number, it occurs at

Re about 120 for F ¼ 1 and 102, and about 150 for

F ¼ 104. Before that minimum value, the ac decreases

quickly with the increase of Re. After that point, the ac
initially increases quickly with the increase of Re and
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neutral stability curve for Da� ¼ 10�2.
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ig. 7. The variation of wave speed, cr, with Re along the

eutral stability curve for Da� ¼ 10�2.
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Fig. 8. The instability boundaries on the (Re;Ra)-plane for

Da� ¼ 10�4.
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then generally levels off. The ac changes little and its

value falls between 2 and 2.4, when the Reynolds num-

ber is greater than about 1000. This indicates that for

most of flow region the wavelength of disturbances for

Da� ¼ 10�2 is less half of the wavelength of the iso-

thermal channel flow without porous medium (with ac of
1.02). The variation of wave speed, cr, with the Reynolds

number is plotted in Fig. 7. The cr of each curve de-

creases very quickly with increasing Re at low Re region.
The wave speed changes very small for Re > 1000 and its

value is about 1.2.

The critical Rayleigh number is substantially in-

creased for Da� ¼ 10�4 and three curves for F ¼ 1, 102,
c

F

n

and 104 are almost overlapping each other, as shown in

Fig. 8. This indicates that the effect from Forchheimer

number is negligible for F 6 104. At Re ¼ 2500, the Rac
for Da� ¼ 10�4 is as high as about 249,500, while the

Rac for Da� ¼ 10�2 is 157.7 for F ¼ 104. This shows that

Rac of Da� ¼ 10�4 is about 1580 times larger than that of

Da� ¼ 10�2. At Re ¼ 300, the Rac for Da� ¼ 10�4 is as

high as about 3.781· 106, which is 8400 times larger than

that ofDa� ¼ 10�2. In other word, the Rac forDa� ¼ 10�4

is three to four orders larger than that of Da� ¼ 10�2 at

the same Re. It is reminded that the variation of Rac
between Da� ¼ 1 and 10�2 is less than one order magni-

tude at the same Re. As shown later in Table 1,
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Fig. 10. The variation of wave speed, cr, with Re along the

neutral stability curve for Da� ¼ 10�4.
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the thermal-buoyant instability is the only type for the

flow instability regardless of the value of Re for

Da� ¼ 10�4, while there are generally three instability

types for different Reynolds numbers for Da� ¼ 1 and

10�2. This indicates that the modified Darcy number has

an important effect on the flow instability.

The variation of the critical wave number, ac, with
the Reynolds number along the neutrally stable curve is

shown in Fig. 9 for Da� ¼ 10�4. Its behavior is also

substantially different from that of Da� ¼ 1 or 10�2. The

ac for Da� ¼ 10�4 decreases monotonously with in-

creasing Reynolds number, while all the wave number

curves for Da� ¼ 1 or 10�2 have a minimum value, as

shown before in Figs. 3 and 6. It is also seen in Fig. 9

that the ac at low Re is high and it is as high as 8.12 at

Re ¼ 300. Its wavelength of disturbance in is only 0.13

of that for the isothermal channel flow without porous

medium. This shows that the wavelength of disturbance

for Da� ¼ 10�4 is rather short at low Reynolds number.

This indicates that its instability is caused by a local

disruption of the velocity field, which is induced by the

temperature fluctuation. Fig. 9 also shows that all the

ac’s are greater than 2.0. The variation of the wave

speed, cr, with the Reynolds number for Da� ¼ 10�4 is

shown in Fig. 10. The wave speed decreases monotoni-

cally with increasing Reynolds number. It is seen that

the cr’s are as high as 12.6 and 4.19 for Re ¼ 300 and

2500, respectively, while they are only about 1.27 and 1.2

for Re ¼ 300 and 2500, respectively, for Da� ¼ 10�2.

This indicates that the wave speed for Da� ¼ 10�4 is

significantly higher than that of Da� ¼ 1 or 10�2.

The analysis of kinetic energy transfer budget for the

neutral stability curve, as shown in Eq. (15), could

provide some insights on the transport mechanisms

during flow instability. As summary of the energy bud-
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Fig. 9. The variation of wave number, ac, with Re along the

neutral stability curve for Da� ¼ 10�4.
get is given in Table 1. For Da� ¼ 1 and F ¼ 1 or 102, it

is reminded that the ac encounters a big jump, when the

Reynolds number reaches a threshold value (about 800

for F ¼ 1 and about 263 for F ¼ 102), as shown in Fig.

3. It is seen in Table 1 that the instability type before

that big jump is the thermal-buoyant instability, where

the kinetic energy mainly comes from the shear pro-

duction, Es. After that jump, the instability type sud-

denly switches from the thermal-buoyant instability to

the thermal-shear instability for F ¼ 1 or to mixed in-

stability for F ¼ 102. It is noted that for the thermal-

shear instability, the kinetic energy mainly comes from

the shear production, Es. For the mixed instability, the

energy generations from shear and buoyant forces are in

the same order. In this paper, the mixed instability is

loosely defined as that either the Es or Eb shears 30–70%

of the total kinetic energy production. At high Reynolds

number, the instability type is the thermal-shear insta-

bility. For F ¼ 104 (Da� ¼ 1), the instability mechanism

is different from that for F ¼ 1 or 102. The instability

types are the thermal-buoyant, mixed, and thermal-shear

instabilities for low, intermediate, and high Reynolds

numbers, respectively. For F ¼ 1 or 102, the kinetic en-

ergy is mainly dissipated through the viscosity term, Ed,

while it is mainly dissipated through Forchheimer term

(due to the form drag of solid matrix), EF, for F ¼ 104.

The instability mechanisms for Da� ¼ 10�2 and

F ¼ 1� 104 are similar. The instability type is the

thermal-buoyant instability at low Reynolds number. It

is seen that the kinetic energy generated from the shear

production, Es, gradually increases with increasing

Reynolds number. At the same Re, the shear production
is also higher when the Forchheimer number is smaller.

Therefore the instability type gradually switches to the

mixed instability for intermediate Re, and finally
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becomes to the thermal-shear instability at high Re. The
transition from one instability type to another type is

also gradually. This indicates that there are generally

three types of instability mechanisms for higher modified

Darcy number. For F ¼ 1 or 102, the kinetic energy is

now mainly dissipated through the modified Darcy term

(due to the surface drag of solid matrix), EDa, while few

of kinetic energy is dissipated through the viscosity term,

Ed. It is seen that EF (due to Forchheimer term) is almost

zero regardless of the Reynolds number. For F ¼ 104,

the kinetic energy is generally dissipated through all the

three terms of EDa, EF, and Ed, even though EDa is larger

than EF or Ed.

The instability mechanism for Da� ¼ 10�4 is very

different from those of Da� ¼ 1 or 10�2. The thermal-

buoyant instability is the only type for the flow insta-

bility regardless of the value of Reynolds number, while

there are generally three instability types for Da� ¼ 1 or

10�2. It is reminded that the critical Rayleigh number for

Da� ¼ 10�4 is significantly larger than that for Da� ¼ 1

or 10�2. This result can be realized from what happens

when the modified Darcy number tends to zero. In this

limit the flow would be slug flow for pure forced con-

vection, no matter what the value of F , and such flow is

always stable. This asymptotic limit would be nearly

attained for Da� ¼ 10�4. This explains why only the

thermal-buoyant type of instability is possible for

Da� ¼ 10�4 in the mixed convection, where the kinetic

energy generated from the buoyancy force is the only

driving mechanism for the flow instability. Also, it is

worth pointing out that when modified Darcy number

is very small, the base velocity and temperature profiles

are mainly a function of Rayleigh–Darcy number

(Ra� Da�), which can be deduced from Eqs. 5 and 6 in

Ref. [4]. Thus it is the Rayleigh–Darcy number rather

than Ra that is pertinent for very small Da�. It is also

showed in Table 1 that more than 82% of the kinetic

energy for Da� ¼ 10�4 is dissipated through the modified

Darcy term of EDa, and the EDa is larger for higher Re.
The energy dissipation through EF is almost zero re-

gardless of the Reynolds number.
6. Conclusions

The linear stability analysis of mixed convection in a

heated vertical channel filled with a fluid-saturated po-

rous medium with imposing uniform heat flux at the

plates was investigated by using Darcy–Brinkman–

Forchheimer model. The results showed that the modi-

fied Darcy number, Da�, has an important effect on the

flow stability characteristics. The lower of the modified

Darcy number, the higher of the critical Rayleigh

number, Rac. For higher value of Da�, the variation of

Rac between Da� ¼ 1 and 10�2 is mild (within one order

of magnitude) at the same Reynolds number, and all the
Rac’s are less than 775 for Re > 200. This indicates that

the fully developed flow for higher modified Darcy

number could become unstable under a mild heating

condition. For lower value of Da� ¼ 10�4, the Rac is

significantly increased, and its Rac is three to four orders

larger than that of Da� ¼ 10�2 at the same Re. The effect
of Forchheimer number, F , on the Rac is mild. It is also

found that the disturbance with zero spanwise wave

number is always the least stable mode, that is, the least

stable disturbances are two-dimensional.

The disturbance kinetic energy budget analysis

showed that the driving mechanisms are substantially

different between the higher and lower modified Darcy

number. For higher value of Da� ¼ 1 or 10�2, there are

generally three instability types, the thermal-buoyant,

mixed, and thermal-shear instabilities for low, interme-

diate, and high Reynolds numbers, respectively. While

for lower value of Da� ¼ 10�4, the thermal-buoyant in-

stability is the only type for the flow instability regard-

less of the value of Reynolds number, which indicates

that the kinetic energy generated from buoyancy force is

responsible for the flow instability.

The critical wave number, ac, is generally greater

than 2.0 for most of flow region. This indicates that the

wavelength of disturbance for mixed convection in the

porous flow is short and it is generally less half of that

for the isothermal channel flow without porous medium

(with ac of 1.02). The result from the variation of ac with
Re showed that the ac for Da� ¼ 1 and F ¼ 1 or 102

encounters a big upward jump, when the Reynolds

number reaches a threshold value. The ac and instability

type show a different behaviors before and after that

jump. Before that jump, the ac decreases quickly with

increasing Re, and it is the thermal-buoyant instability.

After that jump, the ac increases slowly with increasing

Re, and the instability type suddenly switches to the

thermal-shear instability for F ¼ 1 and to mixed insta-

bility for F ¼ 102.

The instability characteristics for Da� ¼ 1 and

F ¼ 104, and Da� ¼ 10�2 and F ¼ 1–104 are generally

similar. But their wave number curves do not have

sudden jump. The transition from one instability type to

another type is also gradually. The result also indicated

that all the curves of ac’s have a minimum value for the

higher modified Darcy number of Da� ¼ 1 or 10�2.

While the critical wave number for Da� ¼ 10�4 shows

different behavior, its ac is very large at low Re and it

decreases monotonously with increasing Reynolds

number.
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